High-Efficiency ZnS: Cu + , Al 3+ Scintillator for X-ray Detection in a Non-Darkroom Environment.
Xin LiXiaodie ZhuHaitao TangJian ZhangMin ZhouQingpeng PengBin MengShuang WangAlexey Nikolaevich YakovlevLei ZhaoJie YuJianbei QiuPublished in: Inorganic chemistry (2023)
Scintillator is a key component in X-ray detectors that determine the performance of the devices. Nevertheless, due to the interference of the ambient light sources, scintillators are only operated in a darkroom environment currently. In this study, we designed a Cu + and Al 3+ co-doped ZnS scintillator (ZnS: Cu + , Al 3+ ) that introduces donor-acceptor (D-A) pairs for X-ray detection. The prepared scintillator displayed an extremely high steady-state light yield (53,000 photons per MeV) upon X-ray irradiation, which is 5.3 times higher than that of the commercial Bi 4 Ge 3 O 12 (BGO) scintillator, making it possible in X-ray detection with the interference of ambient light. Furthermore, the prepared material was employed as a scintillator to construct an indirect X-ray detector, which performed a superior spatial resolution (≈10.0 lp/mm) as well as persistent stability under visible light interference, demonstrating the feasibility of the scintillator in practical applications. Therefore, this research presented a convenient and useful strategy to realize X-ray detection in a non-darkroom environment.