Login / Signup

Hydrological model-based streamflow reconstruction for Indian sub-continental river basins, 1951-2021.

Dipesh Singh ChuphalVimal Mishra
Published in: Scientific data (2023)
Streamflow is a vital component of the global water cycle. Long-term streamflow observations are required for water resources planning and management, hydroclimatic extremes analysis, and ecological assessment. However, long-term streamflow observations for the Indian-Subcontinental (ISC) river basins are lacking. Using meteorological observations, state-of-the-art hydrological model, and river routing model, we developed hydrological model-simulated monthly streamflow from 1951-2021 for the ISC river basins. We used high-resolution vector-based routing model (mizuRoute) to generate streamflow at 9579 stream reaches in the sub-continental river basins. The model-simulated streamflow showed good performance against the observed flow with coefficient of determination (R 2 ) and Nash-Sutcliffe efficiency (NSE) above 0.70 for more than 60% of the gauge stations. The dataset was used to examine the variability in low, average, and high flow across the streams. Long-term changes in streamflow showed a significant decline in flow in the Ganga basin while an increase in the semi-arid western India and Indus basin. Long-term streamflow can be used for planning water management and climate change adaptation in the Indian sub-continent.
Keyphrases
  • climate change
  • water quality
  • high resolution
  • magnetic resonance imaging
  • computed tomography
  • mass spectrometry
  • risk assessment
  • diffusion weighted imaging
  • molecularly imprinted