Neurogenic potential of NG2 in neurotrauma: a systematic review.
Yuri R RigoRadharani BenvenuttiLuis V PortelaNathan Ryzewski StrogulskiPublished in: Neural regeneration research (2024)
Regenerative approaches towards neuronal loss following traumatic brain or spinal cord injury have long been considered a dogma in neuroscience and remain a cutting-edge area of research. This is reflected in a large disparity between the number of studies investigating primary and secondary injury as therapeutic targets in spinal cord and traumatic brain injuries. Significant advances in biotechnology may have the potential to reshape the current state-of-the-art and bring focus to primary injury neurotrauma research. Recent studies using neural-glial factor/antigen 2 (NG2) cells indicate that they may differentiate into neurons even in the developed brain. As these cells show great potential to play a regenerative role, studies have been conducted to test various manipulations in neurotrauma models aimed at eliciting a neurogenic response from them. In the present study, we systematically reviewed the experimental protocols and findings described in the scientific literature, which were peer-reviewed original research articles (1) describing preclinical experimental studies, (2) investigating NG2 cells, (3) associated with neurogenesis and neurotrauma, and (4) in vitro and/or in vivo, available in PubMed/MEDLINE, Web of Science or SCOPUS, from 1998 to 2022. Here, we have reviewed a total of 1504 papers, and summarized findings that ultimately suggest that NG2 cells possess an inducible neurogenic potential in animal models and in vitro. We also discriminate findings of NG2 neurogenesis promoted by different pharmacological and genetic approaches over functional and biochemical outcomes of traumatic brain injury and spinal cord injury models, and provide mounting evidence for the potential benefits of manipulated NG2 cell ex vivo transplantation in primary injury treatment. These findings indicate the feasibility of NG2 cell neurogenesis strategies and add new players in the development of therapeutic alternatives for neurotrauma.
Keyphrases
- spinal cord injury
- spinal cord
- induced apoptosis
- traumatic brain injury
- cell therapy
- cell cycle arrest
- neuropathic pain
- cerebral ischemia
- stem cells
- mesenchymal stem cells
- endoplasmic reticulum stress
- white matter
- single cell
- systematic review
- dna methylation
- public health
- neural stem cells
- genome wide
- bone marrow
- insulin resistance
- weight loss