Login / Signup

TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin.

Erik L MillerDiana C HargreavesCigall KadochChiung-Ying ChangJoseph P CalarcoH Courtney HodgesJason D BuenrostroKairong CuiWilliam J GreenleafKeji ZhaoGerald R Crabtree
Published in: Nature structural & molecular biology (2017)
The resolution and formation of facultative heterochromatin are essential for development, reprogramming, and oncogenesis. The mechanisms underlying these changes are poorly understood owing to the difficulty of studying heterochromatin dynamics and structure in vivo. We devised an in vivo approach to investigate these mechanisms and found that topoisomerase II (TOP2), but not TOP1, synergizes with BAF (mSWI/SNF) ATP-dependent chromatin remodeling complexes genome-wide to resolve facultative heterochromatin to accessible chromatin independent of transcription. This indicates that changes in DNA topology that take place through (de-)catenation rather than the release of torsional stress through swiveling are necessary for heterochromatin resolution. TOP2 and BAF cooperate to recruit pluripotency factors, which explains some of the instructive roles of BAF complexes. Unexpectedly, we found that TOP2 also plays a role in the re-formation of facultative heterochromatin; this finding suggests that facultative heterochromatin and accessible chromatin exist at different states of catenation or other topologies, which might be critical to their structures.
Keyphrases
  • genome wide
  • transcription factor
  • dna damage
  • gene expression
  • single molecule
  • dna methylation
  • copy number
  • high resolution
  • risk assessment
  • stress induced
  • circulating tumor
  • circulating tumor cells