Flexible and wearable energy storage microdevice systems with high performance and safety are promising candidates for the electronics of on-chip integration. Herein, we demonstrate inkjet-printed ultrathin electrodes based on molybdenum disulfide (MoS2) nanosheets for flexible and all-solid-state in-plane microsupercapacitors (MSCs) with high capacitance. The MoS2 nanosheets were uniformly dispersed in the low-boiling point and nontoxic solvent isopropanol to form highly concentrated inks suitable for inkjet printing. The MSCs were assembled by printing the highly concentrated MoS2 inks on a polyimide substrate with appropriate surface tension using a simple and low-cost desktop inkjet printer. Because of the two-dimensional structure of MoS2 nanosheets, the as-assembled planar MSCs have high loadings of active materials per unit area, resulting in more flexibility and thinness than the capacitors with a traditional sandwich structure. These planar MSCs can not only possess any collapsible shape through the computer design but also exhibit excellent electrochemical performance (with a maximum energy density of 0.215 mW h cm-3 and a high-power energy density of 0.079 W cm-3), outstanding mechanical flexibility (almost no degradation of capacitance at different bending radii), good cycle stability (85.6% capacitance retention even after 10,000 charge-discharge cycles), and easy scale-up. Moreover, a blue light-emitting diode can be powered using five MSCs connected in series. The in-plane and low-cost MSCs with high energy densities have great application potential for integrated energy storage systems including wearable planar solar cells and other electronics.