Open Set Audio Classification Using Autoencoders Trained on Few Data.
Javier Naranjo-AlcazarSergi Perez-CastanosPedro ZuccarelloFabio AntonacciMaximo CobosPublished in: Sensors (Basel, Switzerland) (2020)
Open-set recognition (OSR) is a challenging machine learning problem that appears when classifiers are faced with test instances from classes not seen during training. It can be summarized as the problem of correctly identifying instances from a known class (seen during training) while rejecting any unknown or unwanted samples (those belonging to unseen classes). Another problem arising in practical scenarios is few-shot learning (FSL), which appears when there is no availability of a large number of positive samples for training a recognition system. Taking these two limitations into account, a new dataset for OSR and FSL for audio data was recently released to promote research on solutions aimed at addressing both limitations. This paper proposes an audio OSR/FSL system divided into three steps: a high-level audio representation, feature embedding using two different autoencoder architectures and a multi-layer perceptron (MLP) trained on latent space representations to detect known classes and reject unwanted ones. An extensive set of experiments is carried out considering multiple combinations of openness factors (OSR condition) and number of shots (FSL condition), showing the validity of the proposed approach and confirming superior performance with respect to a baseline system based on transfer learning.