Biodegradable Magnesium Alloys Promote Angio-Osteogenesis to Enhance Bone Repair.
Hyung-Seop HanIndong JunHyun-Kwang SeokKang-Sik LeeKyungwoo LeeFrank WitteDiego MantovaniYu-Chan KimSion Glyn-JonesJames R EdwardsPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2020)
Biodegradable metallic materials represent a potential step-change technology that may revolutionize the treatment of broken bones. Implants made with biodegradable metals are significantly stronger than their polymer counterparts and fully biodegradable in vivo, removing the need for secondary surgery or long-term complications. Here, it is shown how clinically approved Mg alloy promotes improved bone repair using an integrated state of the art fetal mouse metatarsal assay coupled with in vivo preclinical studies, second harmonic generation, secretome array analysis, perfusion bioreactor, and high-resolution 3D confocal imaging of vasculature within skeletal tissue, to reveal a vascular-mediated pro-osteogenic mechanism controlling enhanced tissue regeneration. The optimized mechanical properties and corrosion rate of the Mg alloy lead to a controlled release of metallic Mg, Ca, and Zn ions at a rate that facilitates both angiogenesis and coupled osteogenesis for better bone healing, without causing adverse effects at the implantation site. The findings from this study support ongoing development and refinement of biodegradable metal systems to act as crucial portal technologies with significant potential to improve many clinical applications.
Keyphrases
- drug delivery
- high resolution
- bone regeneration
- bone mineral density
- soft tissue
- human health
- minimally invasive
- high throughput
- stem cells
- bone loss
- mesenchymal stem cells
- bone marrow
- risk factors
- gene expression
- postmenopausal women
- coronary artery bypass
- endothelial cells
- acute coronary syndrome
- body composition
- climate change
- magnetic resonance imaging
- computed tomography
- cell therapy
- wound healing
- magnetic resonance
- raman spectroscopy
- anti inflammatory
- single cell
- smoking cessation
- health risk
- health risk assessment