High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection.
Hao FuWeiwei LiuJunqing LiWenguang WuQian ZhaoHaoming BaoLe ZhouShuyi ZhuJinglin KongHongwen ZhangWeiping CaiPublished in: Nanomaterials (Basel, Switzerland) (2022)
Surface-enhanced Raman scattering (SERS) provides an unprecedented opportunity for fingerprinting identification and trace-level detection in chemistry, biomedicine, materials, and so on. Although great efforts have been devoted to fabricating sensitive plasmonic nanomaterials, it is still challenging to batch-produce a SERS substrate with high sensitivity, good reproducibility, and perfect recyclability. Here, we describe a facile fabrication of three-dimensional (3D) hierarchical Au/CuS nanocomposites, in which high-density Au nanotips enable highly SERS-active sensing, and the well-defined microflower (MF) geometry produces perfect signal reproducibility (RSD < 5%) for large laser spot excitations (>50 μm 2 ), which is particularly suitable for practical on-site detection with a handheld Raman spectrometer. In addition, a self-cleaning ability of this Au/CuS Schottky junction photocatalyst under sunlight irradiation allows complete removal of the adsorbed analytes, realizing perfect regeneration of the SERS substrates over many cycles. The mass-production, ultra-sensitive, high-reproducibility, and fast-recyclability features of hierarchical Au/CuS MFs greatly facilitate cost-effective and field SERS detection of trace analytes in practice.
Keyphrases