Login / Signup

Nitrogen-Incorporated Cobalt Sulfide/Graphene Hybrid Catalysts for Overall Water Splitting.

Yun TongQiong SunPengzuo ChenLu ChenZhaofu FeiPaul J Dyson
Published in: ChemSusChem (2020)
Water electrolysis is an advanced and sustainable energy conversion technology used to generate H2 . However, the low efficiency of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hampers the overall water-splitting catalytic performance. Here, a hybrid catalyst was constructed from N-doped CoS2 nanoparticles on N,S-co-doped graphene nanosheets (N-CoS2 /G) using a facile method, and the catalyst exhibited excellent bifunctional activity. Introduction of N atoms not only promoted the adsorption of reaction intermediates, but also bridged the CoS2 nanoparticles and graphene to improve electron transfer. Moreover, using thiourea as both N- and S-source ensured synthesis of much smaller-sized nanoparticles with more surface active sites. Surprisingly, the N-CoS2 /G exhibited superior catalytic activity with a low overpotential of 260 mV for the OER and 109 mV for the HER at a current density of 10 mA cm-2 . The assembled N-CoS2 /G : N-CoS2 /G electrolyzer substantially expedited overall water splitting with a voltage requirement of 1.58 V to reach 10 mA cm-2 , which is superior to most reported Co-based bifunctional catalysts and other non-precious-metal catalysts. This work provides a new strategy towards advanced bifunctional catalysts for water electrolysis.
Keyphrases
  • highly efficient
  • metal organic framework
  • electron transfer
  • walled carbon nanotubes
  • room temperature
  • carbon nanotubes
  • wastewater treatment
  • quantum dots
  • visible light
  • aqueous solution