Lattice-Plane-Dependent Distribution of Ce 3+ at Pt and CeO 2 Interfaces for Pt/CeO 2 Catalysts.
Hajime HojoMinori NakashimaSatoru YoshizakiHisahiro EinagaPublished in: ACS nano (2024)
The interaction between a metal and a support, which is known as the metal-support interaction, often plays a determining role in the catalytic properties of supported metal catalysts. Herein, we have developed model Pt/CeO 2 catalysts, which enabled us to investigate the interface atomic and electronic structures between Pt and the {001}, {011}, and {111} planes of CeO 2 using scanning transmission electron microscopy and electron energy-loss spectroscopy. We found that the number of Ce 3+ ions around the Pt nanoparticles followed the order {001} > {011} > {111}, which was the opposite order of the generally accepted stability of low index surfaces of CeO 2 . Systematic first-principles calculations revealed that the presence of Pt nanoparticles facilitated the formation of oxygen vacancies and that the appearance of the Pt δ+ state was preferred when Pt nanoparticles were in contact with CeO 2 {001} planes due to direct charge transfer from Pt to CeO 2 . These results provide important insights into the nature of the metal-support interaction for a comprehensive understanding of the properties of supported metal catalysts.