Repurposing Cyanine Photoinstability To Develop Near-Infrared Light-Activatable Nanogels for In Vivo Cargo Delivery.
Rodrigo Tapia HernandezMichael C LeeAnuj K YadavJefferson Y ChanPublished in: Journal of the American Chemical Society (2022)
The favorable properties of cyanines (e.g., near-infrared (NIR) absorbance and emission) have made this class of dyes popular for a wide variety of biomedical applications. However, many cyanines are prone to rapid photobleaching when irradiated with light. In this study, we have exploited this undesirable trait to develop NIR-nanogels for NIR light-mediated cargo delivery. NIR-nanogels feature a photolabile cyanine cross-linker (Cy780-Acryl) that can cleave via dioxetane chemistry when irradiated. This photochemical process results in the formation of two carbonyl fragments and concomitant NIR-nanogel degradation to facilitate cargo release. In contrast to studies where cyanines are utilized as photocages, our approach does not require direct chemical attachment to the cargo, thus expanding our ability to deliver molecules that cannot be covalently modified. We showcase this feature by encapsulating a palette of small-molecule chemotherapeutics that feature a structurally diverse chemical architecture. To demonstrate site-selective release in vivo, we generated a murine model of breast cancer. Relative to nonlight irradiated and drug-free controls, treatment with NIR-nanogels loaded with paclitaxel (a potent cytotoxic agent) and NIR light resulted in significant attenuation of tumor growth. Moreover, we show via histological staining of the vital organs that minimal off-target effects are observed.
Keyphrases
- photodynamic therapy
- fluorescence imaging
- fluorescent probe
- drug release
- small molecule
- machine learning
- drug delivery
- deep learning
- magnetic resonance
- emergency department
- dna methylation
- computed tomography
- gene expression
- genome wide
- neural network
- combination therapy
- adverse drug
- loop mediated isothermal amplification
- smoking cessation
- drug discovery
- electronic health record