Login / Signup

Understanding the Early Stages of Nickel Sulfide Nanocluster Growth: Isolation of Ni3 , Ni4 , Ni5 , and Ni8 Intermediates.

Alexander J TouchtonGuang WuTrevor W Hayton
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Addition of sub-stoichiometric quantities of PEt3 and diphenyl disulfide to a solution of [Ni(1,5-cod)2 ] generates a mixture of [Ni3 (SPh)4 (PEt3 )3 ] (1), unreacted [Ni(1,5-cod)2 ], and [(1,5-cod)Ni(PEt3 )2 ], according to 1 H and 31 P{1 H} NMR spectroscopic monitoring of the in situ reaction mixture. On standing, complex 1 converts into [Ni4 (S)(Ph)(SPh)3 (PEt3 )3 ] (2), via formal addition of a "Ni(0)" equivalent, coupled with a CS oxidative addition step, which simultaneously generates the Ni-bound phenyl ligand and the μ3 -sulfide ligand. Upon gentle heating, complex 2 converts into a mixture of [Ni5 (S)2 (SPh)2 (PEt3 )5 ] (3) and [Ni8 (S)5 (PEt3 )7 ] (4), via further addition of "Ni(0)" equivalents, in combination with a series of C-S oxidative addition and CC reductive elimination steps, which serve to convert thiophenolate ligands into sulfide ligands and biphenyl. The presence of 1-4 in the reaction mixture is confirmed by their independent syntheses and subsequent spectroscopic characterization. Overall, this work provides an unprecedented level of detail of the early stages of Ni nanocluster growth and highlights the fundamental reaction steps (i.e., metal atom addition, CS oxidative addition, and CC reductive elimination) that are required to grow an individual cluster.
Keyphrases
  • metal organic framework
  • transition metal
  • computed tomography
  • pet ct
  • magnetic resonance
  • pet imaging
  • high resolution