A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps.
Kelsey A CoffmanQuinn M HankinsonGaelen R BurkePublished in: Proceedings of the National Academy of Sciences of the United States of America (2022)
Heritable symbionts display a wide variety of transmission strategies to travel from one insect generation to the next. Parasitoid wasps, one of the most diverse insect groups, maintain several heritable associations with viruses that are beneficial for wasp survival during their development as parasites of other insects. Most of these beneficial viral entities are strictly transmitted through the wasp germline as endogenous viral elements within wasp genomes. However, a beneficial poxvirus inherited by Diachasmimorpha longicaudata wasps, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), is not integrated into the wasp genome and therefore may employ different tactics to infect future wasp generations. Here, we demonstrated that transmission of DlEPV is primarily dependent on parasitoid wasps, since viral transmission within fruit fly hosts of the wasps was limited to injection of the virus directly into the larval fly body cavity. Additionally, we uncovered a previously undocumented form of posthatch transmission for a mutualistic virus that entails external acquisition and localization of the virus within the adult wasp venom gland. We showed that this route is extremely effective for vertical and horizontal transmission of the virus within D. longicaudata wasps. Furthermore, the beneficial phenotype provided by DlEPV during parasitism was also transmitted with perfect efficiency, indicating an effective mode of symbiont spread to the advantage of infected wasps. These results provide insight into the transmission of beneficial viruses among insects and indicate that viruses can share features with cellular microbes during their evolutionary transitions into symbionts.