Login / Signup

Enhanced CO2 Resistance for Robust Oxygen Separation Through Tantalum-doped Perovskite Membranes.

Chi ZhangHao TianDong YangJaka SunarsoJian LiuShaomin Liu
Published in: ChemSusChem (2016)
Oxygen selective membranes with enhanced oxygen permeability and CO2 resistance are highly required in sustainable clean energy generation technologies. Here, we present novel, cobalt-free, SrFe1-x Tax O3-δ (x=0, 0.025, 0.05, 0.1, 0.2) perovskite membranes. Ta-doping induced lattice structure progression from orthorhombic (x=0) to cubic (x=0.05). SrFe0.95 Ta0.05 O3-δ (SFT0.05) showed the highest oxygen flux rates reaching 0.85 mL min(-1) cm(-2) at 950 °C on a 1.0 mm-thick membrane. Surface decoration can increase the permeation rate further. Ta inclusion within the perovskite lattice of SrFeO3-δ (SF) enhanced the CO2 resistance of the membranes significantly as evidenced by the absence of the carbonate functional groups on the FTIR spectrum when exposed to CO2 atmosphere at 850 °C. The CO2 resistance of Ta-doped SF compounds correlates with the lower basicity and the higher binding energy for the lattice oxygen. SFT0.05 demonstrated high stability during long-term permeation tests under 10% CO2 atmosphere.
Keyphrases