Login / Signup

Highly Compact Artificial Memristive Neuron with Low Energy Consumption.

Yishu ZhangWei HeYujie WuKejie HuangYangshu ShenJiasheng SuYaoyuan WangZiyang ZhangXinglong JiGuoqi LiHongtao ZhangSen SongHuanglong LiLitao SunRong ZhaoLuping Shi
Published in: Small (Weinheim an der Bergstrasse, Germany) (2018)
Neuromorphic systems aim to implement large-scale artificial neural network on hardware to ultimately realize human-level intelligence. The recent development of nonsilicon nanodevices has opened the huge potential of full memristive neural networks (FMNN), consisting of memristive neurons and synapses, for neuromorphic applications. Unlike the widely reported memristive synapses, the development of artificial neurons on memristive devices has less progress. Sophisticated neural dynamics is the major obstacle behind the lagging. Here a rich dynamics-driven artificial neuron is demonstrated, which successfully emulates partial essential neural features of neural processing, including leaky integration, automatic threshold-driven fire, and self-recovery, in a unified manner. The realization of bioplausible artificial neurons on a single device with ultralow power consumption paves the way for constructing energy-efficient large-scale FMNN and may boost the development of neuromorphic systems with high density, low power, and fast speed.
Keyphrases
  • neural network
  • high density
  • spinal cord
  • endothelial cells
  • climate change
  • deep learning
  • human health