Early Neuroprognostication Using Frontal Spectrograms in Moderately Sedated Cardiac Arrest Patients.
Jae Hoon LeePublished in: Clinical EEG and neuroscience (2022)
Introduction. The integrated suppression ratio throughout all electroencephalography (EEG) patterns has rarely been studied. The aim of this study was to evaluate the clinical utility of the suppression ratio and hyperactivity of EEG on spectrograms. Methods. This prospective observational study included 73 cardiac arrest patients. Hardwired frontal EEG monitoring with spectrograms (color density spectral arrays, CDSA) was used to predict neurological outcomes. The mean suppression ratio (MSR) and hyperactivity in the high-frequency band (HHF) in the spectrogram were investigated in moderately sedated patients. Sedative doses were considered to estimate the MSR, which was automatically measured. Results. Using propofol 30 to 40 µg/kg/min and remifentanil 0.1 to 0.15 µg/kg/min, all the patients with an MSR >30% died. At day 2, the MSR in patients with a good outcome was 0%. The cut off values were different as an MSR >30% at day 1 (AUC 0.815) and an MSR >1% at day 2 (AUC 0.891). Of the patients with an MSR ≤30%, HHF was the greatest predictor of a poor outcome (OR 12.858, P = .006). The best predictors of a poor outcome using the spectrogram were suppression ratio (SR) >30% or HHF at day 1 (AUC 0.88) and SR >1% or HHF at day 2 (AUC 0.909). Conclusions. The use of MSR and HHF in frontal spectrograms is convenient and may be successfully employed for early neuroprognostication in moderately sedated cardiac arrest patients. However, spectrograms should be used with electroencephalogram considering the effects of sedatives because of the imperfect detection of electrographic seizures and artifacts.
Keyphrases
- cardiac arrest
- end stage renal disease
- chronic kidney disease
- ejection fraction
- high frequency
- newly diagnosed
- prognostic factors
- working memory
- magnetic resonance imaging
- magnetic resonance
- type diabetes
- mass spectrometry
- computed tomography
- patient reported outcomes
- adipose tissue
- single molecule
- high resolution
- subarachnoid hemorrhage
- atomic force microscopy