Novel genome characteristics contribute to the invasiveness of Phragmites australis (common reed).
Dong-Ha OhKurt P KowalskiQuynh N QuachChathura WijesinghegePhilippa TanfordMaheshi DassanayakeKeith ClayPublished in: Molecular ecology (2021)
The rapid invasion of the non-native Phragmites australis (Poaceae, subfamily Arundinoideae) is a major threat to native wetland ecosystems in North America and elsewhere. We describe the first reference genome for P. australis and compare invasive (ssp. australis) and native (ssp. americanus) genotypes collected from replicated populations across the Laurentian Great Lakes to deduce genomic bases driving its invasive success. Here, we report novel genomic features including a Phragmites lineage-specific whole genome duplication, followed by gene loss and preferential retention of genes associated with transcription factors and regulatory functions in the remaining duplicates. Comparative transcriptomic analyses revealed that genes associated with biotic stress and defence responses were expressed at a higher basal level in invasive genotypes, but native genotypes showed a stronger induction of defence responses when challenged by a fungal endophyte. The reference genome and transcriptomes, combined with previous ecological and environmental data, add to our understanding of mechanisms leading to invasiveness and support the development of novel, genomics-assisted management approaches for invasive Phragmites.