Login / Signup

Facile Preparation of Three-Dimensional Wafer with Interconnected Porous Structure for High-Performance Capture and Nondestructive Release of Circulating Tumor Cells.

Mengran LiJia LiuXuantang WangJiaxi WangLi-Hao HuangMingxia GaoXiangmin Zhang
Published in: Analytical chemistry (2022)
Efficient isolation and downstream bioinformation analysis of circulating tumor cells (CTCs) in whole blood contribute to the early diagnosis of cancer and investigation of cancer metastasis. However, the separation and release of CTCs remain a great challenge due to the extreme rarity of CTCs and severe interference from other cells in complex clinical samples. Herein, we developed a low-cost and easy-to-fabricate aptamer-functionalized wafer with a three-dimensional (3D) interconnected porous structure by grafting polydopamine (PDA), poly(ethylene glycol) (PEG), and aptamer in sequence (Ni@PDA-PEG-Apt) for the capture and release of CTCs. The Ni@PDA-PEG-Apt wafer integrated the features of Ni foam with a 3D interconnected porous structure offering enough tunnels for cells to flow through and enhancing aptamer-cell contact frequency, the spacer PEG with flexible and high hydrophilic property increasing anti-interference ability and providing the wafer with more binding sites for aptamer, which result in an enhanced capture specificity and efficiency for CTCs. Because of these advantages, the Ni@PDA-PEG-Apt wafer achieved a high capture efficiency of 78.25%. The captured cancer cells were mildly released by endonuclease with up to 61.85% efficiency and good proliferation. Furthermore, tumor cells were injected into mice and experienced circulation in vivo. In blood samples after circulation, 65% of target tumor cells can be efficiently captured by the wafer, followed by released and recultured cells with high viability. Further downstream metabolomics analysis showed that target cancer cells remained with high biological activity and can be well separated from MCF-10A cells based on metabolic profiles by the PCA analysis, indicating the great potential of our strategy for further research on the progression of cancer metastasis. Notably, not only is the wafer cheap with a cost of only 3.58 U.S. dollars and easily prepared by environmental-friendly reagents but also the process of capturing and releasing tumor cells can be completed within an hour, which is beneficial for large-scale clinical use in the future.
Keyphrases