Login / Signup

ErbB4 promotes inhibitory synapse formation by cell adhesion, independent of its kinase activity.

Bin LuoZiyang LiuDong LinWenbing ChenDongyan RenZheng YuMingtao XiongChangqin ZhaoEr-Kang FeiBaoming Li
Published in: Translational psychiatry (2021)
The precise control of the nervous system function under the vitality of synapses is extremely critical. Efforts have been taken to explore the underlying cellular and molecular mechanisms for synapse formation. Cell adhesion molecules have been found important for synapse assembly in the brain. Many trans-adhesion complexes have been identified to modulate excitatory synapse formation. However, little is known about the synaptogenic mechanisms for inhibitory synapses. ErbB4 is a receptor tyrosine kinase enriched in interneurons. Here, we showed that overexpressing ErbB4 in HEK293T cells induced gephyrin or GABAAR α1 puncta in co-cultured primary hippocampal neurons. This induction of ErbB4 was independent of its kinase activity. K751M, a kinase-dead mutant of ErbB4, can also induce gephyrin or GABAAR α1 puncta in the co-culture system. We further constructed K751M knock-in mice and found that the homozygous were viable at birth and fertile without changes in gross brain structure. The number of interneurons and inhibitory synapses onto pyramidal neurons (PyNs) were comparable between K751M and wild-type mice but decreased in ErbB4-Null mice. Moreover, ErbB4 can interact in trans with Slitrk3, a transmembrane postsynaptic protein at inhibitory synapses, through the extracellular RLD domain of ErbB4. The deletion of RLD diminished the induction of gephyrin or GABAAR α1 puncta by ErbB4. Finally, disruption of ErbB4-Slitrk3 interaction through neutralization of Slitrk3 by secretable RLD decreased inhibitory synapses onto PyNs and impaired GABAergic transmission. These results identify that ErbB4, as a cell adhesion molecule, promotes inhibitory synapse formation onto PyNs by interacting with Slitrk3 and in a kinase-independent manner, providing an unexpected mechanism of ErbB4 in inhibitory synapse formation.
Keyphrases