Login / Signup

SCC-DFTB Parameters for Fe-C Interactions.

Chang LiuEnrique R BatistaNéstor F AguirrePing YangMarc J CawkwellElena Jakubikova
Published in: The journal of physical chemistry. A (2020)
We present an optimized density-functional tight-binding (DFTB) parameterization for iron-based complexes based on the popular trans3d set of parameters. The transferability of the original and optimized parameterizations is assessed using a set of 50 iron complexes, which include carbonyl, cyanide, polypyridine, and cyclometalated ligands. DFTB-optimized structures predicted using the trans3d parameters show a good agreement with both experimental crystal geometries and density functional theory (DFT)-optimized structures for Fe-N bond lengths. Conversely, Fe-C bond lengths are systematically overestimated. We improve the accuracy of Fe-C interactions by truncating the Fe-O repulsive potential and reparameterizing the Fe-C repulsive potential using a training set of six isolated iron complexes. The new trans3d*-LANLFeC parameter set can produce accurate Fe-C bond lengths in both geometry optimizations and molecular dynamics (MD) simulations, without significantly affecting the accuracy of Fe-N bond lengths. Moreover, the potential energy curves of Fe-C interactions are considerably improved. This improved parameterization may open the door to accurate MD simulations at the DFTB level of theory for large systems containing iron complexes, such as sensitizer-semiconductor assemblies in dye-sensitized solar cells, that are not easily accessible with DFT approaches because of the large number of atoms.
Keyphrases
  • molecular dynamics
  • density functional theory
  • metal organic framework
  • aqueous solution
  • high resolution
  • visible light
  • blood brain barrier
  • molecular docking
  • ionic liquid
  • electron transfer
  • dna binding