In clinical practice, obstetricians use visual interpretation of fetal heart rate (FHR) to diagnose fetal conditions, but inconsistencies among interpretations can hinder accuracy. This study introduces MTU-Net3+, a deep learning model designed for automated, multi-task FHR analysis, aiming to improve diagnostic accuracy and efficiency. The proposed MTU-Net3 + was built upon the UNet3 + architecture, incorporating an encoder, a decoder, full-scale skip connections, and a deep supervision module, and further integrates a self-attention mechanism and bidirectional Long Short-Term Memory layers to enhance its performance. The MTU-Net3 + model accepts the preprocessed 20-minute FHR signals as input, outputting categorical probabilities and baseline values for each time point. The proposed MTU-Net3 + model was trained on a subset of a public database, and was tested on the remaining data of the public database and a private database. In the remaining public datasets, this model achieved F1 scores of 84.21% for deceleration (F1.Dec) and 61.33% for acceleration (F1.Acc), with a Root Mean Square Baseline Difference (RMSD.BL) of 3.46 bpm, 0% of points with an absolute difference exceeding 15 bpm(D15bpm), a Synthetic Inconsistency Coefficient (SI) of 44.82%, and a Morphological Analysis Discordance Index (MADI) of 7.00%. On the private dataset, the model recorded an RMSD.BL of 1.37 bpm, 0% D15bpm, F1.Dec of 100%, F1.Acc of 87.50%, an SI of 12.20% and a MADI of 2.79%. The MTU-Net3 + model proposed in this study performed well in automated FHR analysis, demonstrating its potential as an effective tool in the field of fetal health assessment.