Base rate neglect and neural computations for subjective weight in decision under uncertainty.
Yun-Yen YangShih-Wei WuPublished in: Proceedings of the National Academy of Sciences of the United States of America (2020)
Base rate neglect, an important bias in estimating probability of uncertain events, describes humans' tendency to underweight base rate (prior) relative to individuating information (likelihood). However, the neural mechanisms that give rise to this bias remain elusive. In this study, subjects chose between uncertain prospects where estimating reward probability was essential. We found that when the variability of prior and likelihood information about reward probability were systematically manipulated, prior variability significantly affected the degree to which subjects underweight the base rate of reward probability. Activity in the orbitofrontal cortex, medial prefrontal cortex, and putamen represented the relative subjective weight that reflected such bias. Further, sensitivity to likelihood relative to prior variability in the putamen correlated with individuals' overall tendency to underweight base rate. These findings suggest that in combining prior and likelihood, relative sensitivity to information variability and subjective-weight computations critically contribute to the individual heterogeneity in base rate neglect.