Self-aligned stitching growth of centimeter-scale quasi-single-crystalline hexagonal boron nitride monolayers on liquid copper.
Qing ZhangHuixin ChenSuilin LiuYinyin YuCuiru WangJian HanGuosheng ShaoZhiqiang YaoPublished in: Nanoscale (2022)
Two-dimensional hexagonal boron nitride (hBN) atomic crystals are excellent charge scattering screening interlayers for advanced electronic devices. Although wafer-scale single crystalline hBN monolayer films have been demonstrated on liquid Au and solid Cu (110) and (111) vicinal surfaces, their reproducible growth still remains challenging. Here, we report the facile self-aligned stitching growth of centimeter-scale quasi-single-crystalline hBN monolayer films through synergistic chemical vapor deposition growth kinetics and liquid Cu rheological kinetics control. The sublimation temperature of the ammonia borane precursor, H 2 content and melting temperature of the Cu substrate are revealed to be the dominant factors that regulate hBN nucleation, growth and alignment. The flowing liquid Cu catalytic surface promotes efficient rotation of floating triangular hBN domains and provokes uniform self-alignment upon merging at a critical high temperature of 1105 °C. Identical aligned grains are constantly observed at multiple regions, which corroborate the homogeneous in-plane orientation and uniform stitching over the whole growth area. Continuous quasi-single-crystalline hBN monolayer films are produced by seamless stitching of aligned domains with the same polarity. The quasi-single-crystalline hBN monolayers are successfully included as charge scattering and trap site screening interlayers in the hBN/SiO 2 gate insulator stack to build high performance InGaZnO field-effect transistors (FETs). Full suppression of hysteresis and twofold enhancement of field-effect mobility are realized for InGaZnO FETs built with hBN as the interface dielectric. The facile growth of large quasi-single-crystalline hBN monolayers on liquid Cu paves the way for future high-performance electronics.