Polypyrrole-coated cellulose nanofibers: influence of orientation, coverage and electrical stimulation on SH-SY5Y behavior.
Roman ElashnikovSilvie RimpelováL DěkanovskýV ŠvorčíkOleksiy LyutakovPublished in: Journal of materials chemistry. B (2019)
In the field of tissue engineering, much research has been devoted to the surface topography of conductive materials. However, less work has been carried out on how the electrical stimulation of such materials influences nerve regeneration. Here, we investigated the effect of electrical stimulation on randomly- and uniaxially-aligned polypyrrole-coated cellulose acetate butyrate (PPy/CAB) nanofibers. First, SEM revealed that the conducting PPy coverage resulted in dramatic changes to the nanofiber morphology. In turn, these changes led to an increase in the sample wettability. Fourier transform spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of a PPy layer. Second, human neuroblastoma cells (SH-SY5Y) were seeded on the PPy/CAB nanofibers and stimulated by 100 mV mm-1 at 1 Hz pulses in vitro. We demonstrated that either with or without this electrical stimulation both nanofiber alignment and PPy coverage had a strong influence on cell morphology and attachment. Moreover, fluorescence microscopy revealed that the cells stimulated on PPy/CAB had longer neurite outgrowth. Collectively, our results shed light on the combined effect of scaffold morphology and external stimulation on neuronal cell behavior.
Keyphrases
- tissue engineering
- single cell
- single molecule
- spinal cord injury
- high resolution
- induced apoptosis
- cell cycle arrest
- cell therapy
- affordable care act
- reduced graphene oxide
- ionic liquid
- high throughput
- oxidative stress
- endoplasmic reticulum stress
- atomic force microscopy
- signaling pathway
- healthcare
- computed tomography
- optical coherence tomography
- pi k akt
- sensitive detection
- mass spectrometry
- high speed
- magnetic resonance
- energy transfer
- label free
- fluorescent probe
- liquid chromatography