Long-Wave Infrared Photodetectors Based on 2D Platinum Diselenide atop Optical Cavity Substrates.
Nima Sefidmooye AzarJames BullockVivek Raj ShresthaSivacarendran BalendhranWei YanHyungjin KimAli JaveyKenneth B CrozierPublished in: ACS nano (2021)
Long-wave infrared (LWIR) photodetection is of high technological importance, having a wide range of applications that include thermal imaging and spectroscopy. Two-dimensional (2D) noble-transition-metal dichalcogenides, platinum diselenide (PtSe2) in particular, have recently shown great promise for infrared detection. However, previous studies have mainly focused on wavelengths up to the short-wave infrared region. In this work, we demonstrate LWIR photodetectors based on multilayer PtSe2. In addition, we present an optical cavity substrate that enhances the light-matter interaction in 2D materials and thus their photodetection performance in the LWIR spectral region. The PtSe2 photoconductors fabricated on the TiO2/Au optical cavity substrate exhibit responsivities up to 54 mA/W to LWIR illumination at a wavelength of 8.35 μm. Moreover, these devices show a fast photoresponse with a time constant of 54 ns to white light illumination. The findings of this study reveal the potential of multilayer PtSe2 for fast and broadband photodetection from visible to LWIR wavelengths.