The Valence Orbitals of the Alkaline-Earth Atoms.
Israel FernándezNicole HolzmannGernot FrenkingPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Quantum chemical calculations of the alkaline-earth oxides, imides and dihydrides of the alkaline-earth atoms (Ae=Be, Mg, Ca, Sr, Ba) and the calcium cluster Ca6 H9 [N(SiMe3 )2 ]3 (pmdta)3 (pmdta=N,N,N',N'',N''-pentamethyldiethylenetriamine) have been carried out by using density functional theory. Analysis of the electronic structures by charge and energy partitioning methods suggests that the valence orbitals of the lighter atoms Be and Mg are the (n)s and (n)p orbitals. In contrast, the valence orbitals of the heavier atoms Ca, Sr and Ba comprise the (n)s and (n-1)d orbitals. The alkaline-earth metals Be and Mg build covalent bonds like typical main-group elements, whereas Ca, Sr and Ba covalently bind like transition metals. The results not only shed new light on the covalent bonds of the heavier alkaline-earth metals, but are also very important for understanding and designing experimental studies.