Login / Signup

Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters.

Willem Benjamin BruinLuke TaylorRajat M ThomasJonathan Phillip ShockPaul ZhutovskyYoshinari AbePino AlonsoStephanie H AmeisAlan AnticevicPaul D ArnoldFrancesca AssognaFrancesco BenedettiJan C BeuckePremika S W BoedhoeIrene BollettiniAnushree BoseSilvia BremBrian P BrennanJan K BuitelaarRosa CalvoYuqi ChengKang Ik K ChoSara DallaspeziaDamiaan A J P DenysBenjamin Adam ElyJamie D FeusnerKate D FitzgeraldJean-Paul FoucheEgill A FridgeirssonPatricia GrunerDeniz A GürselTobias U HauserYoshiyuki HiranoMarcelo Q HoexterHao HuChaim HuyserIliyan IvanovAnthony JamesFern Jaspers-FayerNorbert KathmannChristian KaufmannKathrin KochMasaru KunoGerd KvaleJun-Soo KwonYanni LiuChristine LochnerLuisa LázaroPaulo MarquesRachel MarshIgnacio Martínez-ZalacaínDavid Mataix-ColsJosé Manuel MenchónLuciano MinuzziPedro S MoreiraAstrid MorerPedro Silva MoreiraAkiko NakagawaTakashi NakamaeTomohiro NakaoJanardhanan C NarayanaswamyErika L NurmiJoseph O'NeillJose C ParienteChris PerrielloJohn PiacentiniGianfranco SpallettaFederica PirasY C Janardhan ReddyOana G Rus-OswaldYuki SakaiJoão R SatoLianne SchmaalEiji ShimizuH Blair SimpsonNoam SoreniCarles Soriano-MasGianfranco SpallettaEmily R SternMichael C StevensS Evelyn StewartPhilip R SzeszkoDavid F TolinGanesan VenkatasubramanianZhen WangJe-Yeon YunDaan van Rooijnull nullPaul M ThompsonOdile A van den HeuvelDan J SteinGuido A van Wingen
Published in: Translational psychiatry (2020)
No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker.
Keyphrases