Imaging Features and Patterns of Metastasis in Non-Small Cell Lung Cancer with RET Rearrangements.
Subba R DigumarthyDexter P MendozaJessica J LinMarguerite RooneyAndrew DoEmily ChinBeow Y YeapAlice T ShawJustin F GainorPublished in: Cancers (2020)
Rearranged during transfection proto-oncogene (RET) fusions represent a potentially targetable oncogenic driver in non-small cell lung cancer (NSCLC). Imaging features and metastatic patterns of advanced RET fusion-positive (RET+) NSCLC are not well established. Our goal was to compare the imaging features and patterns of metastases in RET+, ALK+ and ROS1+ NSCLC. Patients with RET+, ALK+, or ROS1+ NSCLC seen at our institution between January 2014 and December 2018 with available pre-treatment imaging were identified. The clinicopathologic features, imaging characteristics, and the distribution of metastases were reviewed and compared. We identified 215 patients with NSCLC harboring RET, ALK, or ROS1 gene fusion (RET = 32; ALK = 116; ROS1 = 67). Patients with RET+ NSCLC were older at presentation compared to ALK+ and ROS1+ patients (median age: RET = 64 years; ALK = 51 years, p < 0.001; ROS = 54 years, p = 0.042) and had a higher frequency of neuroendocrine histology (RET = 12%; ALK = 2%, p = 0.025; ROS1 = 0%, p = 0.010). Primary tumors in RET+ patients were more likely to be peripheral (RET = 69%; ALK = 47%, p = 0.029; ROS1 = 36%, p = 0.003), whereas lobar location, size, and density were comparable across the three groups. RET+ NSCLC was associated with a higher frequency of brain metastases at diagnosis compared to ROS1+ NSCLC (RET = 32%, ROS1 = 10%; p = 0.039. Metastatic patterns were otherwise similar across the three molecular subgroups, with high incidences of lymphangitic carcinomatosis, pleural metastases, and sclerotic bone metastases. RET+ NSCLC shares several distinct radiologic features and metastatic spread with ALK+ and ROS1+ NSCLC. These features may suggest the presence of RET fusions and help identify patients who may benefit from further molecular genotyping.
Keyphrases
- advanced non small cell lung cancer
- small cell lung cancer
- brain metastases
- cell death
- dna damage
- reactive oxygen species
- high resolution
- squamous cell carcinoma
- end stage renal disease
- ejection fraction
- oxidative stress
- genome wide
- dna methylation
- gene expression
- newly diagnosed
- prognostic factors
- transcription factor
- high throughput
- peritoneal dialysis
- photodynamic therapy