Login / Signup

Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers.

Meng QiQilei SongJunpeng ZhaoChunfeng MaGuangzhao ZhangXiangjun Gong
Published in: Langmuir : the ACS journal of surfaces and colloids (2017)
Understanding the behavior of bacteria near biodegradable surfaces is critical for the development of biomedical and antibiofouling materials. By using digital holographic microscopy (DHM), we investigated the three-dimensional (3D) behavior of Escherichia coli and Pseudomonas sp. in lipase-containing aquatic environments near dynamic surfaces constructed by biodegradable poly(ε-caprolactone) (PCL)-based polymers in real time. As the enzymatic degradation rate increases, the percentage of near-surface subdiffusive bacteria and consequently, the irreversible adhesion decreases. Atomic force microscopy (AFM) measurements reveal that the adhesion force between bacteria and the surfaces decreases with an increasing degradation rate. In addition, the degradation products elicit a negative chemotactic response in E. coli, further driving them away from the dynamic surfaces through more frequent tumbling motion. Our study clearly demonstrates that bacterial adhesion can be reduced on dynamic surfaces formed by degradable polymers.
Keyphrases