Access to the Antenna System of Photosystem I via Single-Molecule Excitation-Emission Spectroscopy.
Xianjun ZhangRin TaniguchiRyo NagaoTatsuya TomoTakumi NoguchiShen YeYutaka ShibataPublished in: The journal of physical chemistry. B (2024)
In the development of single-molecule spectroscopy, the simultaneous detection of the excitation and emission spectra has been limited. The fluorescence excitation spectrum based on background-free signals is compatible with the fluorescence-emission-based detection of single molecules and can provide insight into the variations in the input energy of the different terminal emitters. Here, we implement single-molecule excitation-emission spectroscopy (SMEES) for photosystem I (PSI) via a cryogenic optical microscope. To this end, we extended our line-focus-based excitation-spectral microscope system to the cryogenic temperature-compatible version. PSI is one of the two photosystems embedded in the thylakoid membrane in oxygen-free photosynthetic organisms. PSI plays an essential role in electron transfer in the photosynthesis reaction. PSIs of many organisms contain a few red-shifted chlorophylls (Chls) with much lower excitation energies than ordinary antenna Chls. The fluorescence emission spectrum originates primarily from the red-shifted Chls, whereas the excitation spectrum is sensitive to the antenna Chls that are upstream of red-shifted Chls. Using SMEES, we obtained the inclining two-dimensional excitation-emission matrix (2D-EEM) of PSI particles isolated from a cyanobacterium, Thermosynechococcus vestitus (equivalent to elongatus ), at about 80 K. Interestingly, by decomposing the inclining 2D-EEMs within time course observation, we found prominent variations in the excitation spectra of the red-shifted Chl pools with different emission wavelengths, strongly indicating the variable excitation energy transfer (EET) pathway from the antenna to the terminal emitting pools. SMEES helps us to directly gain information about the antenna system, which is fundamental to depicting the EET within pigment-protein complexes.
Keyphrases
- energy transfer
- single molecule
- quantum dots
- atomic force microscopy
- living cells
- solid state
- high resolution
- density functional theory
- healthcare
- electron transfer
- small molecule
- optical coherence tomography
- gram negative
- mass spectrometry
- binding protein
- amino acid
- fluorescent probe
- social media
- label free
- real time pcr