Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation.
Yinpan ZhangYaqi ZhaoZhengang HanRuizhong ZhangPeiyao DuYanxia WuXiao-Quan LuPublished in: Angewandte Chemie (International ed. in English) (2020)
By a facile peripheral decoration of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (ATPP) with inherent aggregation-induced emission (AIE) active tetraphenylethene (TPE), a versatile AIEgenic porphyrin derivative (ATPP-TPE) was obtained, which greatly abolishes the detrimental π-π stacking and thus surmounts the notorious aggregation-caused quenching (ACQ) effect of ATPP in aqueous phase. The photoluminescence of ATPP-TPE is 4.5-fold stronger than ATPP at aggregation state. Moreover, an unequivocal aggregation induced electrochemiluminescence (AIECL) of ATPP-TPE was found to be seriously dependent on its aggregation property in aqueous solution with efficiency of 34 %, which is 6 times higher than pure ATPP. The versatility of this molecular structure modulation strategy along with the ACQ-to-AIE transformation in this work provides direction to guide for applying liposoluble porphyrins in aqueous phase by designs of synthetic porphyrin AIEgens.