Login / Signup

Influence of continuously evolving transcatheter aortic valve implantation technology on cerebral oxygenation.

Ward EertmansCornelia GenbruggeTom FretMaud BeranKim EngelenHerbert GutermannMargot Vander LaenenWillem BoerBert FerdinandeFrank JansJo DensCathy De Deyne
Published in: Journal of clinical monitoring and computing (2016)
This study assessed the influence of the evolution in Transcatheter Aortic Valve Implantation technology on cerebral oxygenation. Cerebral oxygenation was measured continuously with Near-Infrared Spectroscopy and compared retrospectively between balloon-expandable, self-expandable and differential deployment valves which were implanted in 12 (34%), 17 (49%) and 6 patients (17%), respectively. Left and right SctO2 values were averaged at four time points and used for analysis (i.e. at baseline, balloon-aortic valvuloplasty, valve deployment, and at the end of the procedure). During balloon-aortic valvuloplasty and valve deployment, cerebral oxygenation decreased in patients treated with balloon or self-expandable valves (balloon-expandable: p = 0.003 and p = 0.002; self-expandable: p < 0.001 and p = 0.003, respectively). The incidence of cerebral desaturations below 80% of baseline was significantly larger in patients treated with balloon-expandable valves (p = 0.001). In contrast, patients who received differential deployment valves never experienced a cerebral desaturation below 80% of baseline. Furthermore, both the incidence and duration below a cerebral oxygenation of 55% was significantly different between balloon and self-expandable valves (p = 0.038 and p = 0.018, respectively). This study demonstrated that Transcatheter Aortic Valve Implantation procedures are associated with significant cerebral desaturations, especially during balloon-aortic valvuloplasty and valve deployment. Moreover, our results showed that latest innovations in Transcatheter Aortic Valve Implantation technology beneficially influenced the adequacy of cerebral perfusion.
Keyphrases