Login / Signup

Insertion Chemistry of Lutetacyclopropene toward Unsaturated C-O/C-N Bonds.

Ze-Jie LvWei LiuMiaomiao ZhuZhengqi ChaiJunnian WeiWen-Xiong Zhang
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Although the reaction chemistry of transition metallacyclopropenes has been well-established in the last decades, the reactivity of rare-earth metallacyclopropenes remains elusive. Herein, we report the reaction of lutetacyclopropene 1 toward a series of unsaturated molecules. The reaction of 1 with one equiv. of PhCOMe, Ar1 CHO (Ar1 =2,6-Me2 C6 H3 ), W(CO)6 , and PhCH=NPh provided oxalutetacyclopentenes, metallacyclic lutetoxycarbene, and azalutetacyclopentene via 1,2-insertion of C=O, C≡O, or C=N bonds into Lu-Csp2 bond, respectively. However, the reaction between 1 and Ar2 N=C=NAr2 (Ar2 =4-MeC6 H4 ) gave an acyclic lutetium complex with a diamidinate ligand by the coupling of one molecule of 1 with two carbodiimides, irrespective of the amount of carbodiimide employed. More interestingly, when 1 was treated with two equiv. of Ar1 CHO, the reductive coupling of two C=O bonds was discovered to give a lutetium pinacolate complex along with the release of tolan. Remarkably, the reactivity of 1 is significantly different from that of scandacyclopropenes; these metallacycles derived from 1 all represent the first cases in rare-earth organometallic chemistry.
Keyphrases
  • electron transfer
  • room temperature
  • transition metal
  • ionic liquid