Login / Signup

Nanostructured lipid carriers containing rapamycin for prevention of corneal fibroblasts proliferation and haze propagation after burn injuries: In vitro and in vivo.

Forouhe Zahir-JouzdaniFatemeh KhonsariMasoud SoleimaniMirgholamreza MahbodEhsan ArefianMostafa HeydariSaeed ShahhosseiniRassoul DinarvandFatemeh Atyabi
Published in: Journal of cellular physiology (2018)
Chemical burns are a major cause of corneal haze and blindness. Corticosteroids are commonly used after corneal burns to attenuate the severity of the inflammation-related fibrosis. While research efforts have been aimed toward application of novel therapeutics. In the current study, a novel drug delivery system based nanostructured lipid carriers (NLCs) were designed to treat corneal alkaline burn injury. Rapamycin, a potent inhibitor of mammalian target of rapamycin pathway, was loaded in NLCs (rapa-NLCs), and the NLCs were characterized. Cell viability assay, cellular uptake of NLCs, and in vitro evaluation of the fibrotic/angiogenic genes suppression by rapa-NLCs were carried out on human isolated corneal fibroblasts. Immunohistochemistry (IHC) assays were also performed after treatment of murine model of corneal alkaline burn with rapa-NLCs. According to the results, rapamycin was efficiently loaded in NLCs. NLCs could enhance coumarin-6 fibroblast uptake by 1.5 times. Rapa-NLCs efficiently downregulated platelet-derived growth factor and transforming growth factor beta genes in vitro. Furthermore, proliferation of fibroblasts, a major cause of corneal haze after injury, reduced. IHC staining of treated cornea with alpha-smooth muscle actin and CD34 + antibodies showed efficient prevention of myofibroblasts differentiation and angiogenesis, respectively. In conclusion, ocular delivery of rapamycin using NLCs after corneal injury may be considered as a promising antifibrotic/angiogenic treatment approach to preserve patient eyesight.
Keyphrases