Login / Signup

Universal Soft Robotic Microgripper.

Haiyan JiaErik MailandJiangtao ZhouZhangjun HuangGiovanni DietlerJohn M KolinskiXinling WangMahmut Selman Sakar
Published in: Small (Weinheim an der Bergstrasse, Germany) (2018)
Here, a soft robotic microgripper is presented that consists of a smart actuated microgel connected to a spatially photopatterned multifunctional base. When pressed onto a target object, the microgel component conforms to its shape, thus providing a simple and adaptive solution for versatile micromanipulation. Without the need for active visual or force feedback, objects of widely varying mechanical and surface properties are reliably gripped through a combination of geometrical interlocking mechanisms instantiated by reversible shape-memory and thermal responsive swelling of the microgel. The gripper applies holding forces exceeding 400 µN, which is high enough to lift loads 1000 times heavier than the microgel. An untethered version of the gripper is developed by remotely controlling the position using magnetic actuation and the contractile state of the microgel using plasmonic absorption. Gentle yet stable robotic manipulation of biological samples under physiological conditions opens up possibilities for high-throughput interrogation and minimally invasive interventions.
Keyphrases
  • minimally invasive
  • high throughput
  • robot assisted
  • working memory
  • cancer therapy
  • single molecule
  • drug delivery
  • skeletal muscle
  • mass spectrometry
  • high resolution
  • label free