A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF.
Matthias Schneider-ReigbertPhilipp BartkoWelf GellerVarius DannenbergAndreas KönigChristina BinderGeorg GoliaschChristian HengstenbergThomas BinderPublished in: The international journal of cardiovascular imaging (2020)
Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.
Keyphrases
- machine learning
- artificial intelligence
- deep learning
- ejection fraction
- left ventricular
- end stage renal disease
- big data
- aortic stenosis
- chronic kidney disease
- newly diagnosed
- magnetic resonance imaging
- convolutional neural network
- computed tomography
- medical students
- prognostic factors
- emergency department
- heart failure
- pulmonary hypertension
- endothelial cells
- primary care
- molecular dynamics
- peritoneal dialysis
- optical coherence tomography
- transcatheter aortic valve replacement
- atrial fibrillation
- mass spectrometry
- neural network
- hypertrophic cardiomyopathy
- left atrial
- induced pluripotent stem cells
- quality improvement
- density functional theory