Login / Signup

Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells.

Tao MengPingping SunFeng YangJie ZhuBaoguang MaoLirong ZhengMinhua Cao
Published in: Proceedings of the National Academy of Sciences of the United States of America (2022)
Oxygen reduction reaction (ORR), an essential reaction in metal-air batteries and fuel cells, still faces many challenges, such as exploiting cost-effective nonprecious metal electrocatalysts and identifying their surface catalytic sites. Here we introduce bulk defects, Frank partial dislocations (FPDs), into metallic cobalt to construct a highly active and stable catalyst and demonstrate an atomic-level insight into its surface terminal catalysis. Through thermally dealloying bimetallic carbide (Co 3 ZnC), FPDs were in situ generated in the final dealloyed metallic cobalt. Both theoretical calculations and atomic characterizations uncovered that FPD-driven surface terminations create a distinctive type of surface catalytic site that combines concave geometry and compressive strain, and this two-in-one site intensively weakens oxygen binding. When being evaluated for the ORR, the catalyst exhibits onset and half-wave potentials of 1.02 and 0.90 V (versus the reversible hydrogen electrode), respectively, and negligible activity decay after 30,000 cycles. Furthermore, zinc-air batteries and H 2 -O 2 /air fuel cells built with this catalyst also achieve remarkable performance, making it a promising alternative to state-of-the-art Pt-based catalysts. Our findings pave the way for the use of bulk defects to upgrade the catalytic properties of nonprecious electrocatalysts.
Keyphrases