Login / Signup

Reduction-Triggered Transformation of Disulfide-Containing Micelles at Chemically Tunable Rates.

Zhengyu DengShuai YuanRonald X XuHaojun LiangShiyong Liu
Published in: Angewandte Chemie (International ed. in English) (2018)
A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites when designing delivery nanocarriers and in vivo nanoreactors. Reported herein are disulfide-crosslinked (DCL) micelles exhibiting reduction-triggered switching of crosslinking modules and synchronized hydrophobic-to-hydrophilic transition. Tumor cell targeted DCL micelles undergo cytoplasmic milieu triggered disulfide cleavage and self-immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur because of the high local concentration and suppression of the apparent amine pKa  value within the hydrophobic cores, thus leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles, with hydrophilic cores, inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance.
Keyphrases