Electrorefining for direct decarburization of molten iron.
William D JudgeJaesuk PaengGisele AzimiPublished in: Nature materials (2021)
Recycling iron and steel is critical for environmental sustainability and essential to close material loops in circular economics. A major challenge is to produce high-value products and to control impurities like carbon in the face of stringent consumer requirements and volatile markets. Here, we develop an electrorefining process that directly decarburizes molten iron by imposing an electromotive force between it and a slag electrolyte. Upon anodic polarization, oxide anions from the slag discharge directly on carbon dissolved in molten iron, evolving gaseous carbon monoxide. In a striking departure from conventional practice that highly relies on reaction with solubilized oxygen, here electrorefining achieves decarburization by direct interfacial reaction. We demonstrate that this technique produces ultra-low-carbon steels and recovers silicon as a by-product at the cathode, requiring a low energy input and no reagents. We expect this process to be scalable and integrable with secondary steel mills.