Login / Signup

Controlled Two-Dimensional Alignment of Metal-Organic Frameworks in Polymer Films.

Jin Yeong KimKyle BarcusSeth M Cohen
Published in: Journal of the American Chemical Society (2021)
Controlling the alignment of metal-organic framework (MOF) particles is valueable for fully exploiting the anisotropic properties and porous structure of these materials. Herein, we propose a simple, one-step method that can control the two-dimensional (2D) alignment of MOF particles over large areas. Orientational control is achieved without consideration of the underlying lattice parameters or the need for particle surface modification, but instead was achieved by selection of the casting solvent on a water surface. Two distinct types of MOF particles, a hexagonal bifrustum morphology of MIL-96 and an octahedral morphology of the UiO-66 family were aligned and captured in a polydimethylsiloxane (PDMS) matrix using this approach. This work provides opportunities for studying and utilizing the anisotropic properties of MOFs in thin film applications.
Keyphrases
  • metal organic framework
  • ionic liquid
  • room temperature
  • mass spectrometry
  • carbon nanotubes