Login / Signup

Mixed convection of two layers with radiative electro-magnetohydrodynamics nanofluid flow in vertical enclosure.

Rahmat EllahiAhmed ZeeshanNasir ShehzadAneel HussainSadiq M Sait
Published in: Nanotechnology (2023)
Mixed convection flow of two layers nanofluid in a vertical enclosure is studied. The channel consists of two regions. Region I is electrically conducting while Region II is electrically non-conducting. Region I is filled with base fluid water with copper oxides nanoparticles and Region II is filled with base fluid kerosene oil with iron oxides. The simultaneous effects of electro-magnetohydrodynamics and Grashof number are also taken into account. The governing flow problem consists of nonlinear coupled differential equations which is tackled using analytical technique. Analytical results have been obtained by the homotopy analysis method (HAM). The results for the leading parameters, such as the Hartmann numbers, Grashof numbers, ratio of viscosities, width ratio, volume fraction of nanoparticles, and the ratio of thermal conductivities for three different electric field scenarios under heat generation/absorption were examined. It is found that the effect of the negative electric load parameter assists the flow while the effect of the positive electric load parameter opposes the flow as compared to the case when the electric load parameter is zero. All outcomes for significant parameters on velocity and temperature are discussed graphically.
Keyphrases
  • climate change
  • high speed
  • metabolic syndrome
  • heat stress
  • skeletal muscle
  • blood flow
  • weight loss
  • iron deficiency