Programmed cell death is an evolutionally conserved cellular process in multicellular organisms that eliminates unnecessary or rogue cells during development, infection, and carcinogenesis. Hematopoietic stem cells (HSCs) are a rare, self-renewing, and multipotent cell population necessary for the establishment and regeneration of the hematopoietic system. Counterintuitively, key components necessary for programmed cell death induction are abundantly expressed in long-lived HSCs, which often survive myeloablative stress by engaging a prosurvival response that counteracts cell death-inducing stimuli. Although HSCs are well known for their apoptosis resistance, recent studies have revealed their unique vulnerability to certain types of programmed necrosis, such as necroptosis and ferroptosis. Moreover, emerging evidence has shown that programmed cell death pathways can be sublethally activated to cause nonlethal consequences such as innate immune response, organelle dysfunction, and mutagenesis. In this review, we summarized recent findings on how divergent cell death programs are molecularly regulated in HSCs. We then discussed potential side effects caused by sublethal activation of programmed cell death pathways on the functionality of surviving HSCs.
Keyphrases
- cell death
- cell cycle arrest
- stem cells
- immune response
- bone marrow
- cell therapy
- single cell
- oxidative stress
- crispr cas
- climate change
- pi k akt
- allogeneic hematopoietic stem cell transplantation
- signaling pathway
- mesenchymal stem cells
- high dose
- cell proliferation
- acute lymphoblastic leukemia
- risk assessment
- low dose