Login / Signup

Age-Related Measurements of the Myelin Water Fraction derived from 3D multi-echo GRASE reflect Myelin Content of the Cerebral White Matter.

Tobias Djamsched FaizyDushyant KumarGabriel BroocksChristian ThalerFabian Alexander FlottmannHannes LeischnerDaniel KutznerSimon HeweraDominik DotzauerJan-Patrick StellmannRavinder ReddyJens FiehlerJan SedlacikSusanne Gellißen
Published in: Scientific reports (2018)
Myelin Water Fraction (MWF) measurements derived from quantitative Myelin Water Imaging (MWI) may detect demyelinating changes of the cerebral white matter (WM) microstructure. Here, we investigated age-related alterations of the MWF in normal aging brains of healthy volunteers utilizing two fast and clinically feasible 3D gradient and spin echo (GRASE) MWI sequences with 3 mm and 5 mm isotropic voxel size. In 45 healthy subjects (age range: 18-79 years), distinct regions of interest (ROI) were defined in the cerebral WM including corticospinal tracts. For the 3 mm sequence, significant correlations of the mean MWF with age were found for most ROIs (r < -0.8 for WM ROIs; r = -0.55 for splenium of corpus callosum; r = -0.75 for genu of corpus callosum; p < 0.001 for all ROIs). Similar correlations with age were found for the ROIs of the 5 mm sequence. No significant correlations were found for the corticospinal tract and the occipital WM (p > 0.05). Mean MWF values obtained from the 3 mm and 5 mm sequences were strongly comparable. The applied 3D GRASE MWI sequences were found to be sensitive for age-dependent myelin changes of the cerebral WM microstructure. The reported MWF values might be of substantial use as reference for further investigations in patient studies.
Keyphrases