Login / Signup

Thoracic responses and injuries to male postmortem human subjects (PMHS) in rear-facing seat configurations in high-speed frontal impacts.

Yun-Seok KangJason StammenAmanda M AgnewGretchen H BakerVikram PradhanAlexander BendigAlena HagedornKevin MoorhouseJohn H Bolte Iv
Published in: Traffic injury prevention (2023)
Objective: One potential nonstandard seating configuration for vehicles with automated driving systems (ADS) is a reclined seat that is rear-facing when in a frontal collision. There are limited biomechanical response and injury data for this seating configuration during high-speed collisions. The main objective of this study was to investigate thoracic biomechanical responses and injuries to male postmortem human subjects (PMHS) in a rear-facing scenario with varying boundary conditions. Method: Fourteen rear-facing male PMHS tests (10 previously published and 4 newly tested) were conducted at two different recline angles (25-degree and 45-degree) in 56 km/h frontal impacts. PMHS were seated in two different seats; one used a Fixed D-Ring (FDR) seat belt assembly and one used an All Belts To Seat (ABTS) restraint. For thoracic instrumentation, strain gages were attached to ribs to quantify strain and fracture timing. A chestband was installed at the mid-sternum level to quantify anterior-posterior (AP) chest deflections. Data from the thorax instrumentation were analyzed to investigate injury mechanisms. Results: The PMHS sustained a greater number of rib fractures (NRF) in the 45-degree recline condition (12 ± 7 NRF for ABTS45 and 25 ± 18 NRF for FDR45) than the 25-degree condition (6 ± 4 NRF for ABTS25 and 12 ± 8 NRF for FDR25), despite AP chest compressions in the 45-degree condition (-23.7 ± 9.4 mm for ABTS45 and -39.6 ± 11.9 mm for FDR45) being smaller than the 25-degree condition (-38.9 ± 16.9 mm for ABTS25 and -55.0 ± 4.4 mm for FDR25). The rib fractures from the ABTS condition were not as symmetric as the FDR condition in the 25-degree recline angle due to a belt retractor structure located at one side of the seatback frame. Average peak AP chest compression occurred at 45.7 ± 3.4 ms for ABTS45, 45.6 ± 3.1 ms for FDR45, 46.7 ± 1.9 ms for ABTS25, and 46.9 ± 2.3 ms for FDR25. Average peak seatback resultant force occurred at 43.9 ± 0.9 ms for ABTS45, 44.6 ± 0.8 ms for FDR45, 42.5 ± 0.2 ms for ABTS25, and 41.5 ± 0.5 ms for FDR25. The majority of rib fractures occurred after peak AP chest compression and peak seatback resultant force likely due to the ramping motion of the PMHS, which might create a combined loading (e.g., AP deflection and upward deflection) to the thorax. Although NRF in the 45-degree reclined condition was greater than the 25-degree recline condition, similar magnitudes of rib strains were observed regardless of seat and restraint types, while strain modes varied. Conclusions: The majority of rib fractures occurred after peak AP chest compression and peak seatback force, especially in FDR25, ABTS45, and FDR45, while the PMHS ramped up along the seatback. AP chest compression, seatback load, and strain measured along the rib could not explain the greater NRF in the 45-degree recline conditions. A complex combination of AP chest deflection with upward deflection was discovered as a possible mechanism for rib fractures in PMHS subjected to rear-facing frontal impacts in this study.
Keyphrases