Login / Signup

A Great late Ediacaran ice age.

Ruimin WangBing ShenXianguo LangBin WenRoss N MitchellHaoran MaZongjun YinYongbo PengYonggang LiuChuanming Zhou
Published in: National science review (2023)
The emergence of the Ediacara biota soon after the Gaskiers glaciation ca. 580 million years ago (Ma) implies a possible glacial fuse for the evolution of animals. However, the timing of Ediacaran glaciation remains controversial because of poor age constraints on the ∼30 Ediacaran glacial deposits known worldwide. In addition, paleomagnetic constraints and a lack of convincing Snowball-like cap carbonates indicate that Ediacaran glaciations likely did not occur at low latitudes. Thus, reconciling the global occurrences without global glaciation remains a paradox. Here, we report that the large amplitude, globally synchronous ca. 571-562 Ma Shuram carbon isotope excursion occurs below the Ediacaran Hankalchough glacial deposit in Tarim, confirming a post-Shuram glaciation. Leveraging paleomagnetic evidence for a ∼90° reorientation of all continents due to true polar wander, and a non-Snowball condition that rules out low-latitude glaciations, we use paleogeographic reconstructions to further constrain glacial ages. Our results depict a 'Great Ediacaran Glaciation' occurring diachronously but continuously from ca. 580-560 Ma as different continents migrated through polar-temperate latitudes. The succession of radiation, turnover and extinction of the Ediacara biota strongly reflects glacial-deglacial dynamics.
Keyphrases
  • microbial community
  • magnetic resonance imaging
  • radiation induced
  • bone mineral density
  • postmenopausal women
  • resting state