A hydrostable samarium(III)-MOF sensor for the sensitive and selective detection of tryptophan based on a "dual antenna effect".
Xiao-Yang ZhaoJia WangQi-Shan YangDong-Lei FuDao-Kuan JiangPublished in: Analytical methods : advancing methods and applications (2021)
Tryptophan (Trp) is one of the essential amino acids, which plays important roles in biological systems and the normal growth of human beings, and it is of great significance to be able to detect Trp in a rapid, efficient, and sensitive way. Herein, a 3D network metal-organic framework ([Sm2(BTEC)1.5(H2O)8]·6H2O) with excellent thermal and water stability was synthesized by a hydrothermal method. Interestingly, it could discriminate Trp from other natural amino acids in aqueous solution through a significant fluorescence enhancement effect, and showed high detection sensitivity (LOD = 330 nM) and outstanding anti-interference ability. The sensor system was successfully applied to the detection of Trp in practical samples, so it was expected to be a sensitive and efficient Trp sensor. In addition, the sensing mechanism was explained in detail by a series of characterization methods combined with density functional theory (DFT). There were many coordination water molecules in the crystal structure of the complex. Based on the small steric hindrance and molecular structure of water molecules, it provided the possibility for coordination interaction between Trp and Sm3+. On the other hand, the triplet energy level (T1) of Trp matched with the 4G5/2 vibrational energy level of Sm3+, so Trp could be used as the second "antenna molecule" besides 1,2,4,5-benzenetetracarboxylic acid (H4BTEC). Therefore, it effectively broadened the way for Sm-MOF to absorb excitation light.