Multislip-enabled morphing of all-inorganic perovskites.
Xiaocui LiYou MengWanpeng LiJun ZhangChaoqun DangHeyi WangShih-Wei HungRong FanFu-Rong ChenShijun ZhaoJohnny C HoYang LuPublished in: Nature materials (2023)
All-inorganic lead halide perovskites (CsPbX 3 , X = Cl, Br or I) are becoming increasingly important for energy conversion and optoelectronics because of their outstanding performance and enhanced environmental stability. Morphing perovskites into specific shapes and geometries without damaging their intrinsic functional properties is attractive for designing devices and manufacturing. However, inorganic semiconductors are often intrinsically brittle at room temperature, except for some recently reported layered or van der Waals semiconductors. Here, by in situ compression, we demonstrate that single-crystal CsPbX 3 micropillars can be substantially morphed into distinct shapes (cubic, L and Z shapes, rectangular arches and so on) without localized cleavage or cracks. Such exceptional plasticity is enabled by successive slips of partial dislocations on multiple [Formula: see text] systems, as evidenced by atomic-resolution transmission electron microscopy and first-principles and atomistic simulations. The optoelectronic performance and bandgap of the devices were unchanged. Thus, our results suggest that CsPbX 3 perovskites, as potential deformable inorganic semiconductors, may have profound implications for the manufacture of advanced optoelectronics and energy systems.