A Novel Method to Prepare Transparent, Flexible and Thermally Conductive Polyethylene/Boron Nitride Films.
Mingming YiMeng HanJunlin ChenZhifeng HaoYuanzhou ChenYimin YaoRong SunPublished in: Nanomaterials (Basel, Switzerland) (2021)
The high thermal conductivity and good insulating properties of boron nitride (BN) make it a promising filler for high-performance polymer-based thermal management materials. An easy way to prepare BN-polymer composites is to directly mix BN particles with polymer matrix. However, a high concentration of fillers usually leads to a huge reduction of mechanical strength and optical transmission. Here, we propose a novel method to prepare polyethylene/boron nitride nanoplates (PE/BNNPs) composites through the combination of electrostatic self-assembly and hot pressing. Through this method, the thermal conductivity of the PE/BNNPs composites reach 0.47 W/mK, which gets a 14.6% improvement compared to pure polyethylene film. Thanks to the tight bonding of polyethylene with BNNPs, the tensile strength of the composite film reaches 1.82 MPa, an increase of 173.58% compared to that of pure polyethylene film (0.66 MPa). The fracture stress was also highly enhanced, with an increase of 148.44% compared to pure polyethylene film. Moreover, the addition of BNNPs in PE does not highly reduce its good transmittance, which is preferred for thermal management in devices like light-emitting diodes. This work gives an insight into the preparation strategy of transparent and flexible thermal management materials with high thermal conductivity.