Login / Signup

Injectable Zn 2+ and Paeoniflorin Release Hydrogel for Promoting Wound Healing.

Lianxu ChenYingxue GuoLu ChenKang HuLiming RuanPengfei LiXuehong CaiBin LiQiyang ShouGuohua Jiang
Published in: ACS applied bio materials (2023)
As more and more superbugs emerge, wounds are struggling to heal due to the inflammation that accompanies infection. Therefore, there is an urgent need to reduce the abuse of antibiotics and find nonantibiotic antimicrobial methods to counter infections to accelerate wound healing. In addition, common wound dressings struggle to cover irregular wounds, causing bacterial invasion or poor drug release, which reduces the wound healing rate. In this study, Chinese medicinal monomer paeoniflorin which can inhibit inflammation is loaded in mesoporous zinc oxide nanoparticles (mZnO), while Zn 2+ released from mZnO degradation can kill bacteria and facilitate wound healing. The drug-loaded mZnO was encapsulated by a hydrogel formed from oxidized konjac glucomannan and carboxymethyl chitosan via rapid Schiff base reaction to obtain an injectable drug-releasing hydrogel wound dressing. The immediate-formation hydrogel allows the dressing to cover any wound shape. In vitro and in vivo studies have demonstrated that the dressing has good biocompatibility and superior antibacterial properties, which can promote wound healing and tissue regeneration by promoting angiogenesis and collagen production, providing a promising perspective for the further development of multifunctional wound dressings.
Keyphrases