Login / Signup

Transverse oscillations and an energy source in a strongly magnetized sunspot.

Ding YuanLibo FuWenda CaoBłażej KuźmaMichaël GeeraertsJuan C Trelles ArjonaKris MurawskiTom Van DoorsselaereAbhishek K SrivastavaYuhu MiaoSong FengXueshang FengCarlos Quintero NodaBasilio Ruiz CoboJiangtao Su
Published in: Nature astronomy (2023)
The solar corona is two to three orders of magnitude hotter than the underlying photosphere, and the energy loss of coronal plasma is extremely strong, requiring a heating flux of over 1,000 W m - 2 to maintain its high temperature. Using the 1.6 m Goode Solar Telescope, we report a detection of ubiquitous and persistent transverse waves in umbral fibrils in the chromosphere of a strongly magnetized sunspot. The energy flux carried by these waves was estimated to be 7.52 × 10 6  W m -2 , three to four orders of magnitude stronger than the energy loss rate of plasma in active regions. Two-fluid magnetohydrodynamic simulations reproduced the high-resolution observations and showed that these waves dissipate significant energy, which is vital for coronal heating. Such transverse oscillations and the associated strong energy flux may exist in a variety of magnetized regions on the Sun, and could be the observational target of next-generation solar telescopes.
Keyphrases
  • high resolution
  • high temperature
  • mass spectrometry
  • working memory
  • loop mediated isothermal amplification
  • label free
  • high efficiency